Disentangling Factors of Variation by Mixing Them

نویسندگان

  • Qiyang Hu
  • Attila Szabó
  • Tiziano Portenier
  • Matthias Zwicker
  • Paolo Favaro
چکیده

We propose an approach to learn image representations that consist of disentangled factors of variation without exploiting any manual labeling or data domain knowledge. A factor of variation corresponds to an image attribute that can be discerned consistently across a set of images, such as the pose or color of objects. Our disentangled representation consists of a concatenation of feature chunks, each chunk representing a factor of variation. It supports applications such as transferring attributes from one image to another, by simply mixing and unmixing feature chunks, and classification or retrieval based on one or several attributes, by considering a user-specified subset of feature chunks. We learn our representation without any labeling or knowledge of the data domain, using an autoencoder architecture with two novel training objectives: first, we propose an invariance objective to encourage that encoding of each attribute, and decoding of each chunk, are invariant to changes in other attributes and chunks, respectively; second, we include a classification objective, which ensures that each chunk corresponds to a consistently discernible attribute in the represented image, hence avoiding degenerate feature mappings where some chunks are completely ignored. We demonstrate the effectiveness of our approach on the MNIST, Sprites, and CelebA datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Better Mixing via Deep Representations

It has been hypothesized, and supported with experimental evidence, that deeper representations, when well trained, tend to do a better job at disentangling the underlying factors of variation. We study the following related conjecture: better representations, in the sense of better disentangling, can be exploited to produce Markov chains that mix faster between modes. Consequently, mixing betw...

متن کامل

Disentangling Factors of Variation via Generative Entangling

Here we propose a novel model family with the objective of learning to disentangle the factors of variation in data. Our approach is based on the spike-and-slab restricted Boltzmann machine which we generalize to include higher-order interactions among multiple latent variables. Seen from a generative perspective, the multiplicative interactions emulates the entangling of factors of variation. ...

متن کامل

Dna-gan: Learning Disentangled Represen-

Disentangling factors of variation has always been a challenging problem in representation learning. Existing algorithms suffer from many limitations, such as unpredictable disentangling factors, bad quality of generated images from encodings, lack of identity information, etc. In this paper, we proposed a supervised algorithm called DNA-GAN trying to disentangle different attributes of images....

متن کامل

JADE: Joint Autoencoders for Dis-Entanglement

The problem of feature disentanglement has been explored in the literature, for the purpose of image and video processing and text analysis. State-of-the-art methods for disentangling feature representations rely on the presence of many labeled samples. In this work, we present a novel method for disentangling factors of variation in data-scarce regimes. Specifically, we explore the application...

متن کامل

An Adversarial Neuro-Tensorial Approach For Learning Disentangled Representations

Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation, to mention a few. Each factor accounts for a source of variability in the data, while the multiplicative interactions of these factors emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved factors fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07410  شماره 

صفحات  -

تاریخ انتشار 2017